
Acta Cryst. (1994). D50, 869-873

Raster3D Version 2.0. A Program for Photorealistic Molecular Graphics

BY ETHAN A. MERRI'Fr* AND MICHAEL E. P. MURPHY

Department of Biological Structure SM-20, University of Washington, Seattle WA 98195, USA

(Received 10 March 1994; accepted 6 June 1994)

869

Abstract

Raster3D Version 2.0 is a program suite for the produc-
tion of photorealistic molecular graphics images. The
code is hardware independent, and is particularly suited
for use in producing large raster images of macro-
molecules for output to a film recorder or high-quality
color printer. The Raster3D suite contains programs for
composing illustrations of space-filling models, ball-and-
stick models and ribbon-and-cylinder representations. It
may also be used to render figures composed using
other graphics tools, notably the widely used program
Molscript [Kraulis (1991). J. Appl. Cryst. 24, 946--
9501.

Introduction
The use of photorealistic rendering for the presentation
of molecular graphics has a number of advantages. One
notable feature is that the sense of depth conveyed in the
rendered image can obviate the need for a stereo pair.
This is advantageous, for example, in the preparation
of transparencies for lecture presentation, a setting in
which stereo pairs are not easily viewed. The rapid
increase in the power of workstations typically used
for interactive molecular graphics has allowed many
applications to incorporate display options which render
solid surfaces using the workstation's graphics hard-
ware and supporting software libraries. Although this
approach has clear advantages in the tight integration
of interactive work with the production of raster images
for the presentation of results, there is still a need for
hardware-independent rendering software to produce the
highest quality illustrations. The rendering algorithms
implemented in workstation hardware and software are
chosen to support real-time interactive use and, therefore,
do not necessarily represent the best that can be achieved
if this restriction is removed. In particular, it is rare
to find support for shadowing, despite the fact that
it is one of the most effective visual cues to depth
within the image. Furthermore the resolution of images
displayed on a workstation screen is limited to the
number of pixels on the screen, typically 1280 × 1024,
and screen photography or other methods of recording

* Author for correspondence.

? 1994 International Union of Crystallography
Printed in Great Britain all rights reserved

the image directly from the display are therefore subject
to this inherent limit. The Raster3D suite of programs is
designed to bypass these limitations while maintaining
as much ease of use as is practical.

Because Raster3D is targeted at a very specific ap-
plication, space-filling and schematic representation of
molecular structure, the choice of rendering algorithms
can be optimized for this intended use. This allows
a considerable gain in image quality and speed when
compared to more general programs which must handle
a wider variety of applications. For example, typical
workstation rendering hardware and associated soft-
ware requires decomposition of all surfaces into tri-
angularly faceted approximations. Typical workstation
implementations then use a surface shading approx-
imation (Gouraud, 1971) which additionally requires
an appropriate surface normal to be associated with
each vertex of each triangular facet. This is used to
calculate the 'correct' shading at each vertex, and the
interior of the facet is then filled in by interpolated
blending of the vertex colors. By contrast Raster3D
uses an analytic description of simple objects such
as spheres and cylinders, while still allowing more
complex surfaces to be built up from a triangular mesh.
This allows the shading of spheres and cylinders to
be 'perfect'. Furthermore, the external knowledge that
the triangular mesh decompositions describe ribbons,
arrows, and helices (rather than some more general
surface) permits a fairly simple implementation of a
more accurate surface-shading algorithm (Phong, 1975).
Raster3D supports a single primary light source which
illuminates the scene from any specified direction, and
which optionally casts shadows. The scene is simultane-
ously illuminated by a secondary light source, which
always shines from the direction of the viewer and
hence casts no visible shadows. The effects of these two
light sources can be handled by two parallel Z-buffer
calculations, a much simpler and faster approach than
is required by general purpose ray-tracing programs for
the handling of a potentially more complex specification
involving many light sources. In practice the images pro-
duced using Raster3D are of noticeably higher quality
than is achieved using workstation graphics hardware
(Fig. 1), and require much less computational time
than equivalent images from a fully general ray-tracing
program.

Acta Ct:vstallographica Section D
ISSN 0907-4449 ,f':, 1994

870 R A S T E R 3 D

(a) tb)

(c) td)

Fig. 1. Representative examples of the use of Raster3D to prepare figures. This composite figure was printed as a single image on a 300 dpi dye
sublimation printer. (a) Schematic representation of the receptor binding site in cholera toxin (Merritt et al., 1994), prepared using version 1.4
of the program Molscript (Kraulis, 1991) to generate a PostScript file. (b) A Raster3D rendering of the same scene generated directly from the
same Molscript input file, i.e. unix commands to generate the images in (a) and (b) correspond respectively to: m o l s c r i p t < 2 n f i l e >
A .ps ; m o l s c r i p t - r < i n f i l e I r e n d e r - t i f f B . t i f . (c) The same Molscript input file was modified slightly for use in preparing
a black and white image, then run through Raster3D using the molras3d script to produce a black and white shaded image. (d) An alternate
depiction of the same binding site composed using the Raster3D programs setup and rods. To render this image as a 1024 x 1152 raster as
shown here required 10.7 s of computation on a DEC Alpha 3500X under OSF/1.3.

ETHAN A. MERRrrq' & MICHAEL E. P. MURPHY 871

The programs

The production of a photorealistic molecular graphics
illustration may be thought of as comprising three stages.
The first stage is the composition of the illustration, in
which atomic coordinates are converted into a variety
of schematic representations and presented in a spe-
cific orientation. The second stage is the rendering of
this composed scene into a raster representation, which
optionally involves the calculation of perspective, shad-
ing, shadowing, multiple light sources and associated
specular highlighting etc. The third stage consists of
transferring this raster representation to some specific
output device or format, perhaps with the addition of
labels or other annotation. The Raster3D suite is pri-
marily a collection of programs for the composition and
rendering of molecular graphics images. In addition it
contains a small set of auxiliary tools for annotation and
further image processing. The various components of the
program suite are described briefly below.

Composition
The Raster3D distribution contains a number of utili-

ties for composing images in a variety of representations.
The setup program reads a standard Brookhaven PDB
file, assigns colors and atomic radii by matching the
atom names, chain identifiers etc., against a file of
template records, and produces an output file describing
the resulting spheres in a format suitable for input to
render. The rods program performs a similar function in
producing a file of cylinder descriptors which represent
bonds and, optionally, associated atoms to create a ball-
and-stick representation. The ribbon program selects
Ca and O atoms from a PDB file to fit a smooth
ribbon for the entire backbone of each protein chain
in the file. The output files from these composition
tools may be mixed or combined as desired before
feeding the resulting composite image description to
render. This allows quite complex figures to be built
up from relatively simple pieces (Fig. ld). A separate
tool for image composition, preras3d, is also available.
This tool provides an alternative method for composing
figures containing space-filled, ball-and-stick, ribbon,
and curved-tube backbone representations. The ball-and-
stick option includes support for solid or dotted bonds.

The generation of image descriptions for render is
not necessarily limited to the use of these specific tools.
Other, existing, programs can be easily modified to
generate the required object description file. In particular
the widely used program Molscript (Kraulis, 1991), has
been modified so that version 1.4 fully supports the
rendering capabilities of Raster3D version 2.0. This not
only means that Raster3D rendering is possible from
any existing Molscript script file, but also allows the use
of Molscript as a 'nearly interactive' composition tool
for new figures. An example of the use of Molscript to

compose a Raster3D image is shown in Figs. l(a) and
l(b).

Rendering
The central rendering program of the suite employs

a fast Z-buffer algorithm to achieve image quality gen-
erally limited to full ray-tracing programs. This algo-
rithm and the initial implementation of Raster3D were
described by Bacon & Anderson (1988). Version 2.0
retains the speed, specular highlighting and shadowing
of the earlier version, while adding support for additional
object types, Phong shading of triangular mesh ribbons,
and a greatly improved user interface.

The render program accepts input from a formatted
file of object descriptors and produces a raster image in
one of three selectable output modes. The current version
of the render program handles five object types: spheres,
triangles, planes and two forms of cylinders. Spheres
are specified by center, radius and color. Triangles are
specified by three vertices and a color. An isolated
triangle is shaded as a flat surface with a uniform surface
normal. Successive triangles with common vertices are
recognized as a triangular mesh, and are rendered as a
smoothly curved surface as discussed below. Planes are
specified by three points and a color, and are treated
as a triangle of infinite extent. The color intensity of
the rendered plane surface, however, decreases with
increasing distance from the viewer. Cylinders may
either have flat ends, typically used for ribbon and
cylinder representation of protein secondary structure,
or have rounded ends, typically used for representing
bonds. Flat-ended cylinders are specified as two points
defining the center of two disks which form the cylinder
ends, a cylinder radius and a color. Rounded cylinders
are similarly described, but the cylinder ends are capped
by hemispheres of the same radius as the cylinder.

Header records in the formatted input file to render
specify the viewpoint for the image, including per-
spective and scale, the location of the primary light
source, the degree of specular highlighting, the optional
calculation of shadowing, and the relative intensity con-
tributions of primary, secondary and ambient lighting to
the final picture. Header records also control the raster
size of the generated image and the level of anti-aliasing
to be employed.

Post-processing
Although the best quality images are produced us-

ing a film recorder or a high-resolution color printer,
other output devices can also take advantage of some
of the features of Raster3D. Direct photography of
Raster3D images displayed on a graphics screen will
capture the shadowing and improved shading, albeit
at lower resolution than a film recorder. For direct
photography from a SGI graphics screen, the auxiliary
program show provides an annotation tool with a menu

872 RASTER3D

driven interface and explanatory messages to guide the
user. The annotations are saved in a separate file and
may be redisplayed with the image for presentation or
subsequent photography purposes. The show program
is compatible only with images generated using the
backwards-compatibility option of render.

Some figures may benefit from Raster3D processing
even when generated for black and white reproduction.
The auxiliary tool molras3d is a unix shell script which
directs the output of render through a dithering pro-
gram which reduces the full color image to black and
white pixels. The resulting monochrome image is then
converted into either Adobe PostScript or a PCL raster
format suitable for printing on HP Laser Jet compatible
printers (Fig. lc).

Implementation
Object types

Rendering a scene with multiple light sources and
support for specular highlighting requires the calculation
of the local surface normals for the component objects.
In Raster3D Version 2.0 the surface normal for spheres
and cylinders is calculated analytically for each pixel.
The treatment for triangles is somewhat more complex,
as described below.

By far the most common use for triangles as objects
is to describe an approximation to a smooth surface by
using a triangular tessellation. However, if the compo-
nent triangles are faithfully rendered as flat surfaces this
produces an image of a faceted surface rather than the
desired smooth surface. This problem is well known,
and can be overcome in a variety of ways. Generally
this is achieved at the cost of maintaining additional
information about the true surface normals of the original
smooth surface, or about the connectivity of the compo-
nent triangles in the tessellation. Because the surfaces
being rendered in Raster3D are generally ribbon-like, a
number of simplifying assumptions can be made which
permit the calculation and rendering of a smooth, rather
than faceted, surface with little additional overhead. As
successive triangles are read from the input file to render,
they are checked for common edges. Any triangle which
is both preceded and followed by another triangle with
a common edge is marked as a 'ribbon triangle' (Fig.
2). During subsequent rendering any points which lie on
a ribbon triangle are treated according to an algorithm
suggested by Phong (1975) in which points are assigned
a surface normal which is interpolated from the surface
normals at the three vertices of the triangle. In the
present case the triangle's trailing vertex is assigned
the surface normal of the preceding triangle; the leading
vertex is assigned the surface normal of the succeeding
triangle; and the middle vertex is assigned the original
surface normal of the triangle itself (Fig. 2). Because
ribbon triangles are identified internally by render, it is

relatively straightforward to modify existing programs
to generate Raster3D object descriptor files which will
benefit from the improved shading algorithm. Minimal
changes to Molscript (Kraulis, 1991), for instance, were
required to provide an updated Raster3D interface. If
for some specific purpose this shading algorithm is
undesirable, it may be bypassed either by disordering
the sequence of triangles or by inserting dummy objects
into the sequence.

Output

Typically Raster3D is used to produce output for
eventual printing on a high-quality color printer or
on a film recorder. In order to transport the rendered
images to any specific hard-copy device it is generally
necessary to reformat them into some standard image
format. Many general-purpose image processing and
format conversion packages are available both commer-
cially and as freely distributed software. Rather than
duplicate this functionality within Raster3D we have
chosen instead to support a limited number of output
formats. In its default mode of operation render emits an
AVS format raster image though stdout, which allows a
direct unix pipe connection to an external image-format
conversion program. Command line options to render
permit three alternative output formats. One is a private
image format provided for backwards-compatibility with
some earlier versions of Raster3D. The remaining two
options allow direct creation of image files compatible
with the libimage image processing tools supplied with
SGI/lrix workstations, or of images files in the widely
recognized tagged image file (TIFF) format.

Vi

Fig. 2. Application of Phong shading to sequential triangles. Eacn
vertex along the edge of the ribbon is assigned an associated vector
corresponding to the surface normal of the central triangle of the
three successive triangles to which it belongs. During rendering, points
which lie on any given triangle are treated as having a surface normal
which is a linear interpolation of the vectors assigned to the three
vertices bounding that triangle. In the figure, the ribbon triangle with
surface normal Ni has vertices Vi - l, Vi and Vi + I . Vertex Vi - I is
assigned a vector equal to the surface normal of the trailing triangle,
Ni - I; vertex Vi + 1 is similarly assigned the surface normal from
the succeeding triangle, Ni + I. The Phong shading algorithm assures
that the rendering used for the ribbon of sequential triangles possesses
a continuous and smooth surface normal, rather than exhibiting a
faceted appearance. Furthermore, specular highlights which lie within
a triangle are correctly rendered by this treatment.

ETHAN A. MERRITT & MICHAEL E. P. MURPHY 873

Availability

The Raster3D program suite is freely available but
unsupported. The core programs have been extensively
tested on a variety of platforms, including SGI/Irix,
DECstation/Ultrix, Alpha/OSF, and ESV workstations.
The auxiliary programs atoms, show and molras3d
are architecture dependent, and have been tested
primarily on SGI/Irix workstations. Source code,
examples of use and documentation for the Raster3D
suite may be obtained via anonymous ftp from site
stanzi.bchem.washington.edu, or via email to the authors
(merritt@ u.washington.edu).

We are happy to give credit to all those who have
contributed to the development of the Raster3D and
related programs, including Wayne Anderson, David Ba-

con, Albert Berghuis, Mark Israel and Stephen Samuel.
Registered trademarks mentioned in this text include
Ultrix (Digital Equipment Corporation), OSF/1 (Open
Software Foundation), PostScript (Adobe Systems), PCL
(Hewlett Packard), SGI and Irix (Silicon Graphics),
and ESV (Evans and Sutherland). MEPM acknowledges
support from the Medical Research Council of Canada.

References

BACON, D. J. & ANDERSON, W. F. (1988). J. Mol. Graphics, 6, 219-220.
GOURAUD, H. (1971). IEEE Trans. Comput. C, 20(6), 623-628.
KRAULIS, P. (1991). J. Appl. Cryst. 24, 946-950.
MERRI'VI', E. A., SARFATY, S., VAN DEN AKKER, F., L'HOIR, C., MARTIAL,

J. A. & HOL, W. G. J. (1994). Protein Sci. 3, 166-175.
PHONG, B.-T. (1975). Commun. ACM, 18, 311-317.

